If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2/3=15
We move all terms to the left:
d^2/3-(15)=0
We multiply all the terms by the denominator
d^2-15*3=0
We add all the numbers together, and all the variables
d^2-45=0
a = 1; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·1·(-45)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*1}=\frac{0-6\sqrt{5}}{2} =-\frac{6\sqrt{5}}{2} =-3\sqrt{5} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*1}=\frac{0+6\sqrt{5}}{2} =\frac{6\sqrt{5}}{2} =3\sqrt{5} $
| 3(y+8)=-2y | | 2000=-3E-08x2+0.0002x+0.0699 | | 23x-14=14x-23 | | 1,625-(1,573.5-x)=346.5 | | 1,625-(1573.5-x)=346.5 | | 24-20-x/10-(10-x)/10=0 | | x^{4}+6x^{3}-3x^{2}+14x-64=0 | | 24-20-x/10-10-x/10=0 | | 24=20-x/10-10-x/10=0 | | 24-10-x/10-20-x/10=0 | | ^5x-2=343 | | 24-(20-x/10)-(10-x)/10=0 | | 24-(10-x)/10-(20-x/10)=0 | | 39+13y=0 | | (10-x)/10+(20-x/10)=24 | | 5w+10=–5w | | -4(3/5x-1/2)=-15 | | 6x^2=121,5 | | -2-15=6x+9 | | 29=3x-3+5x | | 7d=3d-64 | | 40f-50=4030 | | (4^x)^x=4•8^x | | 10-7k=4-6k | | 2(12x+7)+9x+1=18 | | 7r+30=1700 | | x/3-5=3(x+3) | | 3n-4+(2n)n=4 | | 8c-30=300 | | 900=18x | | 4x2-x+1=x+3x2 | | x2+x-7=5 |